The following text field will produce suggestions that follow it as you type.

The Homotopy Index and Partial Differential Equations
The Homotopy Index and Partial Differential Equations

The Homotopy Index and Partial Differential Equations in Bloomington, MN

Current price: $54.99
Loading Inventory...
Get it at Barnes and Noble

Size: OS

Get it at Barnes and Noble
The homotopy index theory was developed by Charles Conley for two­ sided flows on compact spaces. The homotopy or Conley index, which provides an algebraic-topologi­ cal measure of an isolated invariant set, is defined to be the ho­ motopy type of the quotient space N /N , where is a certain 1 2 1 2 compact pair, called an index pair. Roughly speaking, N1 isolates the invariant set and N2 is the "exit ramp" of N . 1 It is shown that the index is independent of the choice of the in­ dex pair and is invariant under homotopic perturbations of the flow. Moreover, the homotopy index generalizes the Morse index of a nQnde­ generate critical point p with respect to a gradient flow on a com­ pact manifold. In fact if the Morse index of p is k, then the homo­ topy index of the invariant set {p} is Ik - the homotopy type of the pointed k-dimensional unit sphere.
Powered by Adeptmind