Home
Spectral Learning on Matrices and Tensors
Barnes and Noble
Loading Inventory...
Spectral Learning on Matrices and Tensors in Bloomington, MN
Current price: $99.00

Spectral Learning on Matrices and Tensors in Bloomington, MN
Current price: $99.00
Loading Inventory...
Size: OS
The authors of this monograph survey recent progress in using spectral methods including matrix and tensor decomposition techniques to learn many popular latent variable models. With careful implementation, tensor-based methods can run efficiently in practice, and in many cases they are the only algorithms with provable guarantees on running time and sample complexity.
The focus is on a special type of tensor decomposition called CP decomposition, and the authors cover a wide range of algorithms to find the components of such tensor decomposition. They also discuss the usefulness of this decomposition by reviewing several probabilistic models that can be learned using such tensor methods.
The second half of the monograph looks at practical applications. This includes using Tensorly, an efficient tensor algebra software package, which has a simple python interface for expressing tensor operations. It also has a flexible back-end system supporting NumPy, PyTorch, TensorFlow, and MXNet.
Spectral Learning on Matrices and Tensors provides a theoretical and practical introduction to designing and deploying spectral learning on both matrices and tensors. It is of interest for all students, researchers and practitioners working on modern day machine learning problems.
The focus is on a special type of tensor decomposition called CP decomposition, and the authors cover a wide range of algorithms to find the components of such tensor decomposition. They also discuss the usefulness of this decomposition by reviewing several probabilistic models that can be learned using such tensor methods.
The second half of the monograph looks at practical applications. This includes using Tensorly, an efficient tensor algebra software package, which has a simple python interface for expressing tensor operations. It also has a flexible back-end system supporting NumPy, PyTorch, TensorFlow, and MXNet.
Spectral Learning on Matrices and Tensors provides a theoretical and practical introduction to designing and deploying spectral learning on both matrices and tensors. It is of interest for all students, researchers and practitioners working on modern day machine learning problems.
The authors of this monograph survey recent progress in using spectral methods including matrix and tensor decomposition techniques to learn many popular latent variable models. With careful implementation, tensor-based methods can run efficiently in practice, and in many cases they are the only algorithms with provable guarantees on running time and sample complexity.
The focus is on a special type of tensor decomposition called CP decomposition, and the authors cover a wide range of algorithms to find the components of such tensor decomposition. They also discuss the usefulness of this decomposition by reviewing several probabilistic models that can be learned using such tensor methods.
The second half of the monograph looks at practical applications. This includes using Tensorly, an efficient tensor algebra software package, which has a simple python interface for expressing tensor operations. It also has a flexible back-end system supporting NumPy, PyTorch, TensorFlow, and MXNet.
Spectral Learning on Matrices and Tensors provides a theoretical and practical introduction to designing and deploying spectral learning on both matrices and tensors. It is of interest for all students, researchers and practitioners working on modern day machine learning problems.
The focus is on a special type of tensor decomposition called CP decomposition, and the authors cover a wide range of algorithms to find the components of such tensor decomposition. They also discuss the usefulness of this decomposition by reviewing several probabilistic models that can be learned using such tensor methods.
The second half of the monograph looks at practical applications. This includes using Tensorly, an efficient tensor algebra software package, which has a simple python interface for expressing tensor operations. It also has a flexible back-end system supporting NumPy, PyTorch, TensorFlow, and MXNet.
Spectral Learning on Matrices and Tensors provides a theoretical and practical introduction to designing and deploying spectral learning on both matrices and tensors. It is of interest for all students, researchers and practitioners working on modern day machine learning problems.
Shop Similar Products

Loading Inventory...
Spectral Theory of Bounded Linear Operators
Barnes and Noble
Current price: $69.99

Loading Inventory...
Spectral Computations for Bounded Operators
Barnes and Noble
Current price: $82.99