The following text field will produce suggestions that follow it as you type.

Barnes and Noble

Loading Inventory...
Eigenspaces of Graphs

Eigenspaces of Graphs in Bloomington, MN

Current price: $67.99
Get it at Barnes and Noble
Eigenspaces of Graphs

Eigenspaces of Graphs in Bloomington, MN

Current price: $67.99
Loading Inventory...

Size: OS

Get it at Barnes and Noble
Graph theory is an important branch of contemporary combinatorial mathematics. By describing recent results in algebraic graph theory and demonstrating how linear algebra can be used to tackle graph-theoretical problems, the authors provide new techniques for specialists in graph theory. The book explains how the spectral theory of finite graphs can be strengthened by exploiting properties of the eigenspaces of adjacency matrices associated with a graph. The extension of spectral techniques proceeds at three levels: using eigenvectors associated with an arbitrary labeling of graph vertices, using geometrical invariants of eigenspaces such as graph angles and main angles, and introducing certain kinds of canonical eigenvectors by means of star partitions and star bases. Current research on these topics is part of a wider effort to forge closer links between algebra and combinatorics. Problems of graph reconstruction and identification are used to illustrate the importance of graph angles and star partitions in relation to graph structure. Specialists in graph theory will welcome this treatment of important new research.
Graph theory is an important branch of contemporary combinatorial mathematics. By describing recent results in algebraic graph theory and demonstrating how linear algebra can be used to tackle graph-theoretical problems, the authors provide new techniques for specialists in graph theory. The book explains how the spectral theory of finite graphs can be strengthened by exploiting properties of the eigenspaces of adjacency matrices associated with a graph. The extension of spectral techniques proceeds at three levels: using eigenvectors associated with an arbitrary labeling of graph vertices, using geometrical invariants of eigenspaces such as graph angles and main angles, and introducing certain kinds of canonical eigenvectors by means of star partitions and star bases. Current research on these topics is part of a wider effort to forge closer links between algebra and combinatorics. Problems of graph reconstruction and identification are used to illustrate the importance of graph angles and star partitions in relation to graph structure. Specialists in graph theory will welcome this treatment of important new research.

Find at Mall of America® in Bloomington, MN

Visit at Mall of America® in Bloomington, MN
Powered by Adeptmind