The following text field will produce suggestions that follow it as you type.

Barnes and Noble

Loading Inventory...
Fourier Series Several Variables with Applications to Partial Differential Equations

Fourier Series Several Variables with Applications to Partial Differential Equations in Bloomington, MN

Current price: $240.00
Get it at Barnes and Noble
Fourier Series Several Variables with Applications to Partial Differential Equations

Fourier Series Several Variables with Applications to Partial Differential Equations in Bloomington, MN

Current price: $240.00
Loading Inventory...

Size: Hardcover

Get it at Barnes and Noble
Fourier Series in Several Variables with Applications to Partial Differential Equations
illustrates the value of Fourier series methods in solving difficult nonlinear partial differential equations (PDEs). Using these methods, the author presents results for stationary Navier-Stokes equations, nonlinear reaction-diffusion systems, and quasilinear elliptic PDEs and resonance theory. He also establishes the connection between multiple Fourier series and number theory.
The book first presents four summability methods used in studying multiple Fourier series: iterated Fejer, Bochner-Riesz, Abel, and Gauss-Weierstrass. It then covers conjugate multiple Fourier series, the analogue of Cantor’s uniqueness theorem in two dimensions, surface spherical harmonics, and Schoenberg’s theorem. After describing five theorems on periodic solutions of nonlinear PDEs, the text concludes with solutions of stationary Navier-Stokes equations.
Discussing many results and studies from the literature, this book demonstrates the robust power of Fourier analysis in solving seemingly impenetrable nonlinear problems.
Fourier Series in Several Variables with Applications to Partial Differential Equations
illustrates the value of Fourier series methods in solving difficult nonlinear partial differential equations (PDEs). Using these methods, the author presents results for stationary Navier-Stokes equations, nonlinear reaction-diffusion systems, and quasilinear elliptic PDEs and resonance theory. He also establishes the connection between multiple Fourier series and number theory.
The book first presents four summability methods used in studying multiple Fourier series: iterated Fejer, Bochner-Riesz, Abel, and Gauss-Weierstrass. It then covers conjugate multiple Fourier series, the analogue of Cantor’s uniqueness theorem in two dimensions, surface spherical harmonics, and Schoenberg’s theorem. After describing five theorems on periodic solutions of nonlinear PDEs, the text concludes with solutions of stationary Navier-Stokes equations.
Discussing many results and studies from the literature, this book demonstrates the robust power of Fourier analysis in solving seemingly impenetrable nonlinear problems.

Find at Mall of America® in Bloomington, MN

Visit at Mall of America® in Bloomington, MN
Powered by Adeptmind